QUASI-STATIONARY FLOW OF A GAS FROM A
CYLINDRICAL CONTAINER OF VARIABLE VOLUME

{(KVAZISTATSIONARNOYE ISTECHENIE GAZA 1Z
TSILINDRICHESKOGO SO0SUDA PEREMENNOGO OB’ ENA)

PMN Vol.22, No.2, 1958, pp.279-285

I.M., BELEN'KII
(Moscow)

(Received 8 July 1958)

One considers the problem of the flow of gas through a small opening
in the frontal wall of the cylindrical container, the rear wall of
which is movable., While the gas is leaving the container the latter
is being replenished with a new gas. This problem is of interest in
the theory of gasoline engines, in the field of internal ballistics,
etc,

1. Formulation of the problem. One introduces into a cylindrical con-
tainer, the rear wall of which acts as a heavy piston displaceable under
the action of expanding gases, a gas at temperature 11 (this temperature
could be the combustion temperature of the fuel) having no initial velo-
city. The gas streams from the container through a small opening in the
frontal wall into a medium without a backpressure, so that at the loca-
tion of the opening one cbtains the critical flow and therefore the
velocity of the gas at the exit equals the local velocity of sound (see
the figure).

Fig. 1.
The greatest difficulty in the non-stationary problem here considered
- the problem of the ocutflowing gas - consists in the intrinsic motion
of the gas within the cylinder, inasmuch as the interaction of waves
reflected, both from the piston and from the frontal wall, and propagat-
ing in the moving gas presents a formidable physical picture.

Thus, in the solution of the Lagrange problem as proposed by Love and
Pidduck [ 1], the formulas relating to the second reflected wave become
already so complicated that their practical usefulness becomes rather
questionable.
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Here we shall adopt the following approximate formulation of the
problem. We shall assume that after the propagation of the first few re~
flected waves a condition is being attained in the gas during which the
basic state parameters, namely the pressure p, the density p and the
absolute temperature T, vary little at a given instant of time from one
point to another and remain functions of time t only; i.e. p = p(t),
p=p(t) and T = T(t).

If the diameter of the container is great by comparison with the
opening of the exit and the mass of the piston sufficiently large by
comparison with the mass of the gas within the container, then one may
neglect the self-excited motion of the gas within the container, putting
the velocity of the gas u = 0,

The layer of gas next to the piston has obviously the velocity equal
to that of the piston v(t). This circumstance can be taken into consider-
ation in formulating the equations of motion and of energy, if instead
of the mass m of piston one considers its induced mass M.

2. Equation of Emergy. If during the time interval dt, G,d ¥ ke of
gas at temperature Ti enters the container, then the amount of energy
which is being conveyed along with the gas to the container equals
RT, k= cp
F—1 Godt ( rn

v

dE = ¢,T:C,d} =

where R is the gas constant, cp the specific heat at a constant pressure,
¢, the specific heat at a constant volume and Yy is a dimensionless
quantity equal to the ratio of the amount of gas entering the container
at time t to the total amount G0 kg of gas entering the container,

The energy dE thus entering the container is expended in changing the
internal energy dE1 of gases within the container at the time t, on the
energy dEz carried by the gases streaming through the opening and on im~
parting the kinetic energy dEB to the piston and adjacent layers of gas.
We shall calculate all those energy contributions, If G(t) denotes the
mass flow of gases streaming through the opening and n(t) is the relative
expenditure of gases

[

_10ec 24

n(t)w.(l_';.&(x(t)dt (2.1
0

then at time ¢ one finds in the container GO(¢'— n) kg of gas at some
temperature T < T,, and therefore

dEy = d [¢,TGy (b —n)] =d {k"f - Golh— n)]

In order to find the amount of energy dEz carried by the gases stream-
ing through the opening during the interval dt we shall use the formula
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for the density of enmergy flux j through an arbitrary surface [ 2 ]
s fud .
3 "(”’2""“)9“
where u is velocity of the gas, p the density and i the enthalpy.
Since the absolute value of the vector j equals the amount of energy

streaming per unit time through unit surface normal to the direction of
the velocityu, then it follows that

dE, = ( k——i )Gdt

where u, and 11 are the velocity and the temperature of exit gases res-
pectively. If the flow of gas takes place into a medium without a back-
pressure (or a very small one) and the pressure within the container 1is
sufficiently large to establish a supersonic flow during gas expansion
(similarly as in the case of the deLaval nozZle), then, as is known [s1,
a critical condition of flow is being established in the exit opening.

Considering the flow of gas as quasi-stationary, i.e. as a continuous
change in time of stationary states, we shall use formulas given by the
stationary flow theory [3 ] in order to find the critical velocity of
the flow u, and the temperature Tx

% p_ 2% 2
’:—_—_...__—._: -
YW =T e T =1 Th= %1

where p(t), p(t) and T(t) are the pressure, the density and the tempera-
ture of gases in the container from which the flow takes place, Sub-
stituting the values of u, and 7} found in this manner into the formula
for dE, and observing that Gdt = Gydy we obtain
dE; = — k - RG,Tdn

The change of kinetic energy of the piston including the adjacent

layers of gas equals
dEs=d (M ”’)

2

Here W is the induced mass of the piston and v(t) the velocity of the
piston,

T

Equating the input and output of energy
dE = dEy + dE; }-dE;

and introducing the dimensionless parameters: temperature r = 1711 and
piston velocity v = v/u. where v, is a characteristic velocity equal to

TIGRT; _ T G,
TV meE—n cl/ T M @2)

and ¢ = v4811 is the velocity of sound in the gas during its adiabatic
expansion at temperature 71. we obtain the basic energy equation
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4y = d [ (§ — )] + krdn - d (+?) (2.3)
which can be reduced to the following form
(1 —7)dy = —ndr+ (k—1) Tdn -+ d(+?) (2.4)

3. The basic relationships. The equation of motion of the piston

reads
dv

MZ_=S8Sp(t 3.
=58P (3.1)
where S is the area of the container cross section and p(t) is the press-
ure of gases in the container.

The amount of gas introduced into the container depends on many
factors. We shall consider here the simpler but at the same time very
important case when the elementary amount Godtb kg of gas introduced
into the container during the interval dt is proportional to the element-
ary pressure impulse of the gas pdt, i.e. Godtﬁ = Bpdt, where B is some
constant, Consequently

Gy % = Bp(t) (3.2)

Eliminating from equations (3.1) and (3.2) the elementary impulse pdt,
and after integration, we obtain the veliocity of the piston
S =) 3.3)
where ¢b is the fraction of gas introduced into the container at the
moment when the piston begins to move. The time rate of the gas flow
G(t) corresponding to the critical condition of flow can be expressed on
the basis of stationary flow theory [3 ] in the form

t
Gty = 'DV%}{ (3.4)

where the constant D has the following value

Fa—

k41
2 {Kk~1}) —
2 . k .
D={_-_ &, — 3.5
(;c + 1) F Vh’n 6

and Sk is the cross section of the exit opening,

Using the above values for G(t) and the formulas (2.1) and (3.4) we
find

and from the system of formulas (3,2) and (3.6) after elimination of the
elementary impulse pdt we obtain

i’l D4 D Y !f{gg)-:

F Ry T or v \\‘fg’/ \d (3.7)
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Substituting the found expression for r into equation of energy (2.4)
and using the relationship (3.3), after some simplification and dividing
all the members by a factor dyr/dy # 0 we obtain the following nonlinear
differential equation of the second order

o — )d ¢+A d¢ 4+ Ay /d¢\ oy A (Y — ) = 0 (3.8)
Here
B k1 4 1
Ay — §<1—) Area I A= | (3.9)
k41
T Ay + = G, 1SV
A= T\_z"‘) 2 .\3_> (3.10)

We shall determine the initial conditions from the fact that the
moment at which the gas begins to flow out of the container coincides
with the beginning of the movement of the piston, and the temperature of
the gas equals at this time T = T,, i.e. for 7 = 0 we have i = t; and
T = 1, Consequently on the basis of (3.7)

dyy
an /... ::?T

The variables ¢ and  vary in limits ‘/'0 < 1 (= 1 corresponds to
the end of gas supply to the container) and 0 < qi,(the value 7,
corresponds to the time when i/ = 1),

We shall consider various cases of integrating the equation (3,8).

4. The flow of gas out of the container having constant volume. One
obtains this condition when the piston, which is formed by the rear wall
of the container, is stationary. This of course can be attained by
assuming that the mass of the piston is infinite, i.e. GO/M = 0. In this
case the parameter A (3.10) becomes zero and the basic equation (3.8) has
the following form

(=) 5 4 A2 Az A= 0 (==%%) (4.1)
dy dn,

Equation (4.1) can be integrated by means of the following substitu-
tion

b—ne@E=c (4.2)
Taking derivative with respect to n we obtain
@E—De@+@—ni =0

Substituting now for (i ~ n)dx/dn from equation (4.1) we obtain,
after separation of variables, the following relation for the function
¢ (x):

do (# —1)d=x _ 2{z—1)dx

it g = 4.3
v M Am LAt a5 *3)
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where the notation has been introduced:

2= k—iiV k~1) g}x

Integrating (4.3) and substituting the found expression for ¢ (z)
into (4.2) we obtain

g —mn)(z— 3'31,)'x (33——1‘2}3 = ¢

(a::%(xim'l) 3::2(r2-1)) )

Ty — Tg TS g — I

Constant ¢ is determined from the condition that at the moment the

flow starts ¢ = ¢b' 7 =0, and x = N where
xo:(é‘ﬁ) =B (4.5)
dn n

The equation of state pw = RT will be used to determine the gas
pressure p(t). Since T= 7}r. and the specific volume » = '0/G0(¢" ),
where '0 is the volume of the container from which the flow issues, then

_ RTI \
P{t)= W, Got(¢—m)

Using the expression ( — 7) determined from (4.4) and noting that

the dimensionless temperature on the basis of (3.7) and (4.5) is

2 /d"b ) )Z
T = = (4.6)
( ) \dvl \x()
we obtain the following from the state equation pw = RT
ple) <o @ o) (e —m) " (o BTy G 4.7
Wo =)

We shall discuss the condition of the extreme value of pressure with-
in the container. Taking the logarithmic derivative of p(x) and using
the values of a, B, z,, x, and x, we obtain

— kg2
OP . 2k id o
da: P @) z{x— ) (& — a3)

from which follows that for the value of x = k~1x02 the pressure of gases
in the container will attain an extreme value, since it can be shown
that the second derivative dzp/dxz is different from zero at x = k—lxoz.
The analysis of expression dzp/dz2 at x = k_ixOZ shows that its sign
depends on the sign of expression A = (k"lxoz ~ 1); thus: 1) for A > 0,
corresponding to the value zy > Pﬁf the gas pressure is a minimum, 2)

for A < 0, corresponding to z, <V%, the gas pressure is a maximum, If

A = 0, which cerresponds to the case x5 = vﬁt'the problem needs an addi-
tional investigation. In this case, as will be shown later, a stationary
process of gas outflow takes place at a constant dimensionless temperature
r = k’l; the gas pressure in this case weill remain constant,

3. The stationary flow of gas from the container. Suppose, starting at
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e certain instant, the dimensionless inflow of gas di{ equals the
dimensionless outflow dn and consequently

9
.’L‘—dn
From relations (3.7) and (4.5)
_(Dy_ 1 (5.1)
=(7) =z

and as a result the expansion of gas in the container will be isothermal,

Considering now equation (3.8) and noting that dy//dnp = 1 and
d%y /dn?= 0 we obtain

A+ A4 434 A — ¢ =0

It follows from the above that the constant A4 (3.10) should be zero
and therefore

Ay+ A+ Ay =0 (5.2)

The fact that parameter 4 (3.10) vanishes reduces to the condition
GO/M = 0 and this corresponds to the stationary rear wall of the con-
tainer (since the mass ¥ of the piston becomes infinite in this case).
The result thus obtained indicates that the stationary process of flow
here analyzed can occur only from a container having a constant volume,

Substituting into equation (5.2) the values of coefficients Ai (3.9)
and using relations (5.1) we find that r = k=1, i.e. the ratio of the
gas temperature T within the container to the temperature 11 of gas
entering the container remains constant and equal to the ratio of specific
heats cp/cv. This result is known as Langevin’'s theorem [4, 5 ]

It should be pointed out that the Langevin formula r = e may be also
obtained starting from the energy equation (2.4), if one assumes that
d(w?) = 0, dr =0, and d¢y = dy. This yields (1 — kr )dy = 0, from
which one obtains the Langevin formula.

6. The flow of gas from a container with a moving wall, We shall con-
sider the flow of gas out of a container with a mdving wall from the
instant when the supply of gas to the container is being stopped; this
corresponds to the value of dimensionless variable ¢y = 1. The correspond~
ing energy equation is obtained if in equation (2.4) we put ¢y = 1 and
dif = 0,

This yields

(1—n)dr 4 (k—1)Tdn4-d () =0 (6.1)

From the system of equations (3.1) and (3.6) through elimination of
the elementary impulse pdt we obtain

dv _ GoS
i ST T
dqn MD
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Using the dimensionless velocity v = v/v*, the dimensicnless tempera-
ture r can be determined as
_— ,1 (d> (6.2)

dn
where the constant A is defined as before by expression (3.10). Sub-
stituting the expression (6.2) for r into the energy equation {(6.,1) we
find
2 dv d2y k—-—-idv
{— RO A =
Adn{( )dn2+ 2 + 'f

Dividing by the factor dv/dn # 0 and introducing a new variable
y=1-m7, we obtain

ylv_k—1dv d" o Av=0 (6.3)
dy? 2

It cen be directly verified that this equation can be reduced by the
change of variables

1 n
= AR = ZPW (Z 6.4
v=1; V() = Z"W (2) (6.4)
where the constant n = %(k + 1), to the following Bessel equation
d2 W 1dW’¢.1*“n\p _ 6.5
O i (e (6:5)

It is known [6 ] that if n is not an integer, which happens to be the
case in our problem, then the general integral of equation (6.5) can be
expressed by means of Bessel functions of the first kind Jn(Z) and J“n(Z);

W (Z)= CJd , (&) + CoJ _,, (Z)
where 61 and C2 are constants determined from initial conditions,
We shall switch now from the variables Z and W to the variables y and
v for which purpose we shall use formulae (6.4). Incorporating constant

multipliers into the constants C1 and C2 we obtain the following ex~
pression for the dimensionless velocity v of the piston:

v(y) =yl (€, @V Ay) + CuT_, 2V Ay)} (6.6)

Using formula (6.2) we can determine the dimensionless temperature r:
yroLoav 1@
VA dn VAdy

If now by means of (6,6) one determines the derivative dv /dy and
then uses the well known relationships [6 ]
9 ’ , )
2 =Ty @) =T @, IO =Ty D+ Ty D)

one obtains after some simplifications the following expression for r:
n-—1

Viey ® { O, VAN Cod_,y, @V} (6.7)
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Equations (6,6) and (6.7) fully solve the problem. In order to
determine the constants C1 and C2 one has to make use of initial condi-

tions: whenn =7,, thenr =7, and v =v,.

The formulae obtained above can be transformed if expansions of
Bessel functions are used:

o @
(___ 1)1)1 (1/2 Z)'n+_m
Jp(2) = 2 mP{(—n-tm-+41)

()

Substituting this expansion into (6.6) and (6.7) and observing that
Z =2y Ay, after some simplification we obtain:

viyy == C* @ (A, n, )+ C" Dy (A, 1, y) (6.8)
- 1
V3= — 5 (Ol Ru(d, ny) 4 Co*Ra (A m y)} (6.9
where
A’fz n A""I/: n
Oy Cyt o= Cy 0
= 'ThF1D : T—=nt1)

and the functions @ (A,n,y), €, (4,n,5), R, (a,n,y) and R,(4,n,y) have
the following expansions

o0 o
(Dl (:l, n, ?j) == { i ([ + 2 :in?'wny?n>3 (D‘Z (A: n, 31) - 1 + }} "4m_ nym
Hiw=i M=
o o
By (Aon, gy ="t {n -+ z (n-m) A, _nym} , Ri(4d,n, )= 2 mA .y, ﬂym‘l
m=1 M==]

The coefficients A and A entering into these expansions are
determined by means of the follo&ing recurrence formulas
—A A

A = S A— A
mEL R T G T a1 ™ in

n-—1

Coefficients A  ~_ are obtained from A~ by means of changing n
into ~n. ' ’

The gas pressure p{t) and also the piston trajectory can be found by
assuming an adiabatic expansion of gas and by using the Poisson adiabatic
equation pwk = plwlk where Py and w, are respectively the pressure and
specific volume of gases within the container at the moment when the
process begins.
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