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One considers the problem of the flow of gas through a small opening 
in the frontal wall of the cylindrical container. the rear wall of 
which is movable. While the gas is leaving the container the latter 
is being replenished with a new gas. This problem is of interest in 

the theory of gasoline engines, in the field of internal ballistics, 
etc. 

1. Formulation of the problem. One introduces into a cylindrical con- 
tainer, the rear wall of which acts as a heavy piston displaceable under 
the action of expanding gases, a gas at temperature TX (this temperature 
could be the combustion temperature of the fuel) having no initial velo- 
city. The gas streams from the container through a small opening in the 
frontal wall into a medium without a be&pressure, so that at the locs- 
tion of the opening one obtains the critical flow and therefore the 
velocity of the gas at the exit equals the local velocity of sound (see 
the figure). 

Fig. 1. 
The greatest difficulty in the non-stationary problem here considered 

- the problem of the outflowing gas - consists in the intrinsic motion 
of the gas within the cylinder, inasmuch as the interaction of waves 
reflected, both from the piston and from the frontal wall, and propagat- 
ing in the moving gas presents a formidable physical picture. 

Thus, in the solution of the Lagrange problem as proposed by Love and 
Pidduck [l I, the formulas relating to the second reflected wave become 
already so complicated that their practical usefulness becomes rather 

questionable. 
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Here we shall adopt the following approximate formulation of the 
problem. We shall assume that after the propagation of the first few re- 
flected waves a condition is being attained in the gas during which the 
basic state parameters, namely the pressure p, the density p and the 
absolute temperature T, vary little at a given instant of time from one 
point to another and remain functions of time t only; i.e. p = p(t), 

P = p(t) and T- T(t). 

If the diameter of the container is great by comparison with the 
opening of the exit and the mass of the piston sufficiently large by 
comparison with the mass of the gas within the container, then one may 
neglect the self-excited motion of the gas within the container, putting 
the velocity of the gas u = 0. 

The layer of gas next to the piston has obviously the velocity equal 
to that of the piston u(t). This circumstance can be taken into consider- 
ation in formulating the equations of motion and of energy, if instead 
of the mass a of piston one considers its induced mass H. 

2. Equation of Eaerw. If during the time interval dt, God $ kg of 
gas at temperature T1 enters the container, then the amount of energy 
which is being conveyed along with the gas to the container equals 

where R is the gas constant, c the specific heat at a constant pressure, 
c,, the specific heat at a consfant volume and $ is a dimensionless 
quantity equal to the ratio of the amount of gas entering the container 
at time t to the total amount GO kg of gas entering the container. 

The energy dE thus entering the container is expended in changing the 
internal energy dE, of gases within the container at the time t, on the 
energy dEp carried by the gases streaming through the opening and on im- 
parting the kinetic energy dE., to the piston and adjacent layers of gas. 
We shall calculate all those energy contributions. If G(t) denotes the 
mass flow of gases streaming through the opening and W(t) is the relative 
expenditure of gases 

t 
Yj (t) =: i;?- c(t) fit 

‘0 i 
0 

(2.1) 

then at time t one finds in the container Go@ - r~) kg of gas at some 
temperature T < T1, and therefore 

dEI = d [c,TG, (4 - q)] = d r_.?.!% G, (4 - q) 
[k-l I 

In order to find the amount of energy dEz carried by the gases stream- 
ing through the opening during the interval dt we shall use the formula 
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for the density of energy flux j through an arbitrary surface 12 ] 

j=($+i)pu 

where m is velocity of the gas, p the density and i the enthalpy. 

Since the absolute value of the vector j equals the amount of energy 
streaming per unit time through unit surface normal to the direction of 

the velocity II t then it follows that 

dEl = 

where uk and Tk are the velocity and the temperature of exit gases res- 
pectively. If the flow of’ gas takes place into a medium without a back- 
pressure (or a very small one) and the pressure within the container is 
sufficiently large to establish a supersonic flow during gas expansion 
(similarly as in the case of the delaval noztile), then, as is known f3 1, 
a critical condition of flow is being established in the exit opening. 

Considering the flow of gas as quasi-stationary, i.e. as a continuous 
change in time of stationary states, we shall use formulas given by the 
stationary flow theory !.3 1 in order to find the critical velocity of 
the flow uk and the temperature Tk 

2k uk’=---- p - 2k RT, 
k--l p k-i 

T, = - 2 T 
k+i 

where p(t), p(t) and T(t) are the pressure, the density and the tempera- 
ture of gases in the container from which the flow takes place. Sub- 
stituting the values of uk and Tk found in this manner into the-formula 
for dE2 and observing that Gdt = GO4 we obtain 

dE%=k 
k--l 

RG,Tdq 

The change of kinetic energy of the piston including the adjacent 
layers of gas equals 

d&z=: !? 
( > 2 

Here Y is the induced mass of the piston and v(t) the velocity of the 
piston. 

Equating the input and output of energy 
dE = d& + dEs f dE3 

and introducing the dimensionless parameters: temperature T = T/T1 and 
piston velocity v = v/v. where v is a characteristic velocity equal to 

. 

v= 2G@RTI 
J 

2 Go 
1 M (k - 1) = c kfk- I) %- 

and c = 1/ kRTl is the velocity of sound in the gas during its adiabatic 
expansion at temperature T1, we obtain the basic energy equation 
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dJ, = d Lr N - ?)I + kT& -t- d (-4 

which can be reduced to the following form 

(1 - 7) dl) = (+ - q) dr + (k - 1) Tdq + d(v2) 

(2.3) 

(2.4) 

3. the basic relationships. The equation of motion of the piston 
reads 

M $ = Sp ft) (3.1) 

where S is the area of the container cross section and p(t) is the press- 
ure of gases in the container. 

The amount of gas introduced into the container depends on many 
factors. We shall consider here the simpler but at the same time very 
important case when the elementary amount Cod+ kg of gas introduced 
into the container during the interval dt is proportional to the element- 
ary pressure impulse of the gas pdt, i.e. Cod+ = Bpdt. where B is some 
constant. Consequently 

G dj, zz Up@) 
’ dt (3.2) 

Eliminating from equations (3.1) and (3.2) the elementary impulse pdt, 

and after integration, we obtain the velocity of the piston 

where $u is the fraction of gas introduced into the container at the 

moment when the piston begins to move. The time rate of the gas flow 

G(t) corresponding to the critical condition of flow can be expressed on 

the basis of stationary flow theory [3 1 in the form 

where the constant lJ has the following value 

(3.3) 

(3.4) 

(3.5) 

and Sk is the cross section of the 

Using the above values for C(t) 
find 

dri 

exit opening. 

and the formulas (2.1) and (3.4) we 

1) P(t) -_.--- 
dt -- Co 1/7(t) 

(3.6) 

and from the system of formulas (3.2) and (3.6) after elimination of the 

elementary impulse pdt we obtain 

(3.7) 
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Substituting the found expression for r into equation of energy (2.4) 
and using the relationship (3.3), after some simplification and dividing 
all the members by a factor dti/dq f 0 we obtain the following nonlinear 
differential equation of the second order 

Here 

k+l 

We shall determine the initial conditions from the fact that the 
moment at which the gas begins to flow out of the container coincides 
with the beginning of the movement of the piston, and the temperature of 
the gas equals at this time T = T1, i.e. for W = 0 we have $ = I,!+, and 
r = 1. Consequently on the basis of (3.7) 

/dQ \ 13 

The variables I& and W vary in limits $O < $4 1 (@ = 1 corresponds to 

the end of gas SUPD~Y to the container) and O< W < WI, (the value WI 
corresponds to the time when If/ = 1). 

We shall consider various cases of integrating the equation (3.8). 

4. The flow of gas out of the container having constant volume. One 
obtains this condition when the piston, which is formed by the rear wall 
of the container, is stationary, This of course can be attained by 
assuming that the mass of the piston is infinite, i.e. GO/H = 0. In this 
case the parameter A (3.10) becomes zero and the basic equation (3.8) has 
the following form 

Equation (4.1) can be integrated by means of the following substitu- 
tion 

(9 - ?I ‘p (%I = c (4.2) 

Taking derivative with respect to W we obtain 

Substituting now for (II/ - q)dx/dq from equation (4.1) we obtain, 
after separation of variables, the following relation for the function 
#(x1: 

e _ Tzz 

(a - 1) dx 2(x-1)dx 

P /I, + d,x + dzx” = (x - 21) (x - ~2) 
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where the notation has been introduced: 

X 
1,2 = - 

J!+* I/(yy+(.E,” 

Integrating (4.3) and substituting the found expression for $(xj 
into (4.2) we obtain 

((tt-~)(r-xZi)“(Z-x2)~-c 
i 
cc = 2 @a-- 1) 

Tf - x2 
, 9 =: a(J2-*)) 

xp - 51 (4.4) 

Constant c is determined from the condition that at the moment the 
flow starts $ = $o, 9 = 0, and x = x0 where 

The equation of state pm = AT will be used to determine the gas 
pressure p(t). Since T = Tlr , and the specific volume w = go/Co ($ - ~1, 
where WO is the volume of the container from which the flow issues, then 

Using the expression ($- q) determined from (4.4) and noting that 
the dimensionless temperature on the basis of (3.7) and (4.5) is 

we obtain the following from the state equation pa = RT 

(4.6) 

(4.7) 

We shall discuss the condition of the extreme value of pressure with- 
in the container. Taking the logarithmic derivative of p(x) and using 
the values of a, PI xi, x2 and x0 we obtain 

dL CT 2Jip (2) x - 1,.-~x,2 ___- 
dx 2 (x - x1) (x -- 22) 

from which follows that for the value of x = k’1x02 the pressure of gases 
in the container will attain an extreme value, since it can be shown 
that the second derivative d2p/dx2 is different from zero at x = kBizo2. 
The analysis of expression d2p/dx2 at x = k-1,0Z shows that its sign 
depends on the sign of expression x = (ka1z02 - 1); thus: 1) for x > 0. 
corresponding to the value x,, > K the gas pressure is a minimum, 2) 
for A < 0. corresponding to x,, <fl, the gas pressure is a maximum. If 
X = 0, which carresponds to the case x0 = fi the problem needs an addi- 
tional investigation. In this case, as will be shown later, a stationary 
process of gas outflow takes place at a constant dimensionless temperature 
r=k -l; the gas pressure in this case weill remain constant. 

5. The stationary flow of gas from the container. Suppose, starting at 
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a oertain instant, the dimensionless inflow of gas d$ equals the 
dimensionless outflow dq and consequently 

zI:*zl 
dq 

From relations (3.7) and (4.5) 

(5.1) 

and as a result the expansion of gas in the container will be isothermal. 

Considering now equation (3.8) and noting that d$/dv = 1 and 

d2$ /dq2- 0 we obtain 

.4,+4+442+~(J,-hJ=O 

It follows froa the above that the constant A (3.10) should be zero 
and therefore 

4+-41+Az=O (5.2) 

The fact that parameter A (3.10) vanishes reduces to the condition 

G,/kf = 0 and this corresponds to the stationary rear wall of the con- 
tainer (since the mass # of the piston becomes infinite in this case). 
The result thus obtained indicates that the stationary process of flow 
here analyzed can occur only from a container having a constant volume. 

Substituting into equation (5.2) the values of coefficients Ai (3.9) 
and using relations (5.1) we find that I = k-l, i.e. the ratio of the 
gas temperature T within the container to the temperature Ti of gas 
entering the container remains constant and equal to the ratio of specific 
heats c,,/cu. This result is known as Langevin’s theorem [4, 5 1 

It should be pointed out that the Langevin formula r = k-l may be also 
obtained starting from the energy equation (2.4). if one assumes that 

d(v2) = 0, dr = 0, and d$ = dq. This yields (1 - kt )d$ = 0, from 
which one obtains the Langevin formula. 

6. The flow of gas from a container with a moving wall. We shall con- 
sider the flow of gas out of a container with a moving wall from the 
instant when the supply of gas to the container is being stopped; this 
corresponds to the value of dimensionless variable $ 
fng energy equation is obtained if in equation (2.4) 
dGI, = 0. 

This yields 

= 1. The correspond- 
we put $k = 1 and 

(6.1) 

From the system of equations (3.1) and (3.6) through elimination of 
the elementary impulse pdt we obtain 

dv C’llJ’ J/J-, -=- 
dq MD 
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Using the dimensionless velocity v = u/v , the dimensionless temnera- 
*. 

ture z can be determined as 

where the constant A is defined as before 
stituting the expression (6.2) for r into 
find 

(6.2) 

by expression (3.10). Sub- 
the energy equation (6.1) we 

Dividing by the factor dv/dq # 0 and introducing a new variable 
y= l- 7, we obtain 

(6.3) 

It ten be directly verified that this equation can be reduced by the 
change of variables 

y = $_ zz, v (y) -I: ZW (2) (6.4) 

where the constant n = %fk + l), to the following Bessel equation 

(6.5) 

It is known (6 I that if n is not an integer, which happens to be the 
case in our problem, then the general integral of equation (6.5) can be 

expressed by means of Bessel functions of the first kind J,(Z) and J_,(z): 

W V)= GJ,, W) + ‘AJ__, (2) 

where Cl and C2 are constants determined from initial conditions. 

We shall switch now from the variables Z and IV to the variables y and 
v for which purpose we shall use formulae (6.4). Incorporating constant 
multipliers into the constants Cl and C2 we obtain the following ex- 
pression for the dimensionless velocity v of the piston: 

v(y) = yl’sn {CIJ, (2 IfBy) + &.I_,, (2 Y-ff,)) 

Using formula (6.2) we can determine the dimensionless temperature r: 

1 dv 
15 = m dV --_- 

i&g 

If now by means of (6.6) one determines the derivative dv/dy and 
then uses the well known relationships [S 1 

26,’ (Z) = $,__I (Z) - Jn+z V), 2+ J, (Z) = J,_l (Z) i_ Jn+* (Z) 

one obtains after some simplifications the following expression for r: 
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Equations (6.6) and (6.7) fully solve the problem. In order to 
determine the constants C, and C, one has to make 
tions: 

The 
Bessel 

when q = vi, then : = rl 
L 
and v = v 1’ 

formulae obtained above can be transformed 
functions are used: 

use of initial condi- 

if expansions of 

Substituting this expansion into (6.6) and (6.7) and observing that 
2 =2fi after some simplification we obtain: 

where 

and the functions @I (A,n,Y). @‘z (A,n,Y)* Ri(a,n,y) and RL(A,n,y) have 
the following expansions 

The coefficients A and A entering into these expansions are 
determined by means of”‘th”e foll%iii recurrence formulas 

1 
-A A 

-- ntf1, iI = -- 
(Hi + 1) (m--n-+ 2) 

A 
??I, 71' 

iI 
1n= ___ 

n-l 

Coefficients AIl, _n are obtained from A by means of 
into - n . 

I. n 
changing n 

The gas pressure pit) and also the piston trajectory can be found by 
assuming an adiabatic expansion of gas and by using the Poisson adiabatic 
equation psk = plwl k where p 1 and o1 are respectively the pressure and 
specific volume of gases within the container at the moment when the 
process begins. 
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